Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Pollut ; 331(Pt 2): 121826, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37196840

RESUMEN

The Metropolitan Area of São Paulo (MASP) is among the largest urban areas in the Southern Hemisphere. Vehicular emissions are of great concern in metropolitan areas and MASP is unique due to the use of biofuels on a large scale (sugarcane ethanol and biodiesel). In this work, tunnel measurements were employed to assess vehicle emissions and to calculate emission factors (EFs) for heavy-duty and light-duty vehicles (HDVs and LDVs). The EFs were determined for particulate matter (PM) and its chemical compounds. The EFs obtained for 2018 were compared with previous tunnel experiments performed in the same area. An overall trend of reduction of fine and coarse PM, organic carbon (OC), and elemental carbon (EC) EFs for both LDVs and HDVs was observed if compared to those observed in past years, suggesting the effectiveness of vehicular emissions control policies implemented in Brazil. A predominance of Fe, Cu, Al, and Ba emissions was observed for the LDV fleet in the fine fraction. Cu presented higher emissions than two decades ago, which was associated with the increased use of ethanol fuel in the region. For HDVs, Zn and Pb were mostly emitted in the fine mode and were linked with lubricating oil emissions from diesel vehicles. A predominance in the emission of three- and four-ring polycyclic aromatic hydrocarbons (PAHs) for HDVs and five-ring PAHs for LDVs agreed with what was observed in previous studies. The use of biofuels may explain the lower PAH emissions for LDVs (including carcinogenic benzo[a]pyrene) compared to those observed in other countries. The tendency observed was that LDVs emitted higher amounts of carcinogenic species. The use of these real EFs in air quality modeling resulted in more accurate simulations of PM concentrations, showing the importance of updating data with real-world measurements.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Emisiones de Vehículos/análisis , Biocombustibles , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Monitoreo del Ambiente/métodos , Brasil , Material Particulado/análisis , Carbono/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Etanol
2.
Sci Total Environ ; 856(Pt 2): 159006, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36162571

RESUMEN

This study characterized the chemical composition of particulate matter (PM) from light- (LDV) and heavy-duty (HDV) vehicles based on two traffic tunnel samplings carried out in the megacity of São Paulo (Brazil), which has >7 million vehicles and intense biofuel use. The samples were collected with high-volume samplers and analyzed using chemical characterization techniques (ion and gas chromatography, thermal-optical analysis, and inductively coupled plasma mass spectroscopy). Chemical source profiles (%) were calculated based on the measurements performed inside and outside the tunnels. Identifying a high abundance of Fe and Cu for traffic-related PM in the LDV-impacted tunnel was possible, linked with the emission of vehicles powered by ethanol and gasohol (gasoline and ethanol blend). We calculated diagnostic ratios (e.g., EC/Cu, Fe/Cu, pyrene/benzo[a]pyrene, pyrene/benzo[b]fluoranthene, and fluoranthene/benzo[b]fluoranthene) characteristic of fuel exhausts (diesel/biodiesel and ethanol/gasohol), allowing their use in the assessment of the temporal variation of the fuel type used in urban sites. Element diagnostic ratios (Cu/Sb and Fe/Cu) pointed to the predominance of LDVs exhaust-related copper and can differentiate LDVs exhaust from brake wear emissions. The carbonaceous fraction EC3 was suggested as an HDV emission tracer. A higher total polycyclic aromatic hydrocarbons (PAHs) fraction of traffic-related PM2.5 was observed in the HDV-impacted tunnel, with a predominance of diesel-related pyrene and fluoranthene, as well as higher oxy-PAHs (e.g., 9,10-anthraquinone, associated with biodiesel blends) abundances. However, carcinogenic species presented higher abundances for the LDV-impacted tunnel (e.g., benzo[a]pyrene). These findings highlighted the impact of biofuels on the characteristic ratios of chemical species and pointed to possible markers for LDVs and HDVs exhausts.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Material Particulado/análisis , Biocombustibles/análisis , Contaminantes Atmosféricos/análisis , Benzo(a)pireno/análisis , Monitoreo del Ambiente/métodos , Brasil , Emisiones de Vehículos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Etanol/análisis
3.
Environ Sci Technol ; 55(10): 6677-6687, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33939403

RESUMEN

Since 2001, four emission measurement campaigns have been conducted in multiple traffic tunnels in the megacity of São Paulo, Brazil, an area with a fleet of more than 7 million vehicles running on fuels with high biofuel contents: gasoline + ethanol for light-duty vehicles (LDVs) and diesel + biodiesel for heavy-duty vehicles (HDVs). Emission factors for LDVs and HDVs were calculated using a carbon balance method, the pollutants considered including nitrogen oxides (NOx), carbon monoxide (CO), and sulfur dioxide, as well as carbon dioxide and ethanol. From 2001 to 2018, fleet-average emission factors for LDVs and HDVs, respectively, were found to decrease by 4.9 and 5.1% per year for CO and by 5.5 and 4.2% per year for NOx. These reductions demonstrate that regulations for vehicle emissions adopted in Brazil in the last 30 years improved air quality in the megacity of São Paulo significantly, albeit with a clear delay. These findings, especially those for CO, indicate that official emission inventories underestimate vehicle emissions. Here, we demonstrated that the adoption of emission factors calculated under real-world conditions can dramatically improve air quality modeling in the region.


Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Contaminantes Atmosféricos/análisis , Biocombustibles , Brasil , Monitoreo del Ambiente , Gasolina/análisis , Vehículos a Motor , Óxidos de Nitrógeno/análisis , Emisiones de Vehículos/análisis
4.
Environ Pollut ; 259: 113732, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31884216

RESUMEN

Polycyclic Aromatic Hydrocarbons are strongly associated with agricultural, residential, transportation, and industrial activities. This study determined by GC-MS the concentration of 15 PAHs in soil and sediments at different sites from the Awotan-Asunle dumpsite area in the Southwestern region of Nigeria, which is one of the largest dumpsites in Africa. The sources of contamination, toxicity and associated risks for human health were also evaluated. Total PAHs concentrations were from 489 to 5616 µg kg-1, and 642-2159 µg kg-1, for soil and sediment, respectively. For soils, the highest values were observed for indeno[1,2,3-c,d]pyrene, coronene, and phenanthrene, while for sediments, the most abundant species were pyrene, fluoranthene and phenanthrene. Diagnostic ratios were used to determine the sources of PAHs and suggested that the compounds were mainly emitted from non-traffic sources. The total BaP-TEQ and BaP-MEQ for soils did not exceed the value recommended by the Canadian guideline since the country does not present guidelines. The analysis of incremental lifetime cancer risk was high mostly for dermal and ingestion exposures in the population. This study might provide valuable information regarding exposure to PAHs in soils of a Nigerian community.


Asunto(s)
Monitoreo del Ambiente/métodos , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Suelo/química , Canadá , Humanos , Nigeria , Medición de Riesgo
5.
Chemosphere ; 237: 124499, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31401431

RESUMEN

Urban trees are a new tool for pollutant monitoring since gaseous and particulate pollutants can deposit in its barks. Polycyclic aromatic hydrocarbons (PAHs) levels were determined in gaseous phase samples collected in polyurethane foam (PUF), total suspended particles (TSP) samples collected in quartz fiber filters and tree bark samples (Tipuana and Sibipiruna) collected in the surroundings of an industrial complex in the metropolitan area of São Paulo. Benzo(b)fluoranthene presented the highest average concentration in the TSP samples and phenanthrene, the highest average concentration in the PUF samples; the sum of carcinogenic equivalents for benzo(a)pyrene (BaPEq) for both phases was above 20 ng m-3, representing a high cancer risk. The most abundant PAH for tree barks was fluoranthene; low weight PAHs presented a higher abundance than the observed in TSP. Coronene (vehicular exhaust marker) presented good correlations with fluoranthene in the tree bark samples, suggesting an influence of vehicular emissions. A tree bark sample collected near the petrochemical area presented biomarkers of petrogenic origin (hopanoids) in the mass spectrum and an unresolved complex mixture (UCM) profile. The results suggested an influence of both vehicular and industrial sources on the air quality observed in the atmosphere and tree barks samples.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Corteza de la Planta/química , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminación del Aire , Atmósfera/análisis , Brasil , Carcinógenos/análisis , Carbón Mineral , Polvo , Fluorenos , Gases , Humanos , Material Particulado/análisis , Fenantrenos , Compuestos Policíclicos , Emisiones de Vehículos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...